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Machine Learning

I Supervised Learning
I Classification
I Regression

I Unsupervised Learning

I Reinforcement Learning
I Continuously update decision rules as new information

becomes available

I In precision medicine we generally focus on supervised
learning (this lecture), and reinforcement learning
(lectures 7 & 8)

I Many methods were originally developed with an
emphasis on prediction rather than inference, but we are
working on inference (many open questions)
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Support Vector Machines (SVM)

I Supervised learning methods originally developed for
linear binary classification

I Several extensions have been developed for multi-class
classification, non-linear classification, linear and
non-linear regression, clustering, etc.

I All variants are based on the construction of one or more
hyperplanes in high- or infinite-dimensional space

I Often used in the high-dimensional (p � n) setting
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Separating Hyperplane Classifiers

For binary classification the training data consists of n pairs of
(x1, y1), . . . , (xn, yn) with xi ∈ Rp, yi ∈ {−1,+1}
I Separating hyperplane

classifiers construct linear
decision boundaries that
separate the data

I In the example there are
infinitely many possible
separating hyperplanes

I The SVM decision
boundary is the the
hyperplane that provides
maximal separation

X1

X
2
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Linear Algebra of a Hyperplane

I The green line is the affine
set L defined by the
equation
f (x) = β0 + βTx = 0

I β∗ = β/‖β‖ is the vector
normal to the surface of L

I For any point x0 in L,
βTx0 = −β0

I The signed distance of
any point x to L is given
by 1
‖β‖(β

Tx − β0) Source: ESL Ch. 4
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Optimal Separating Hyperplane
The optimal separating hyperplane separates the two classes
and maximizes the distance to the closest point from either
class

I Provides a unique solution for the separating hyperplane
I Reduces generalization error
I Found as the solution to the optimization problem

max
β,β0,‖β‖=1

M

subject to yi (x
T
i β + β0) ≥ M, i = 1, . . . , n

Or equivalently

min
β,β0,

‖β‖2

subject to yi (x
T
i β + β0) ≥ 1, i = 1, . . . , n
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Non-separable Case

I What if there is no
hyperplane that separates
the data?

I We can introduce slack
variables, ξi , that measure
how far observations are
from the correct side of
the margin

I The support vectors are
observations that lie on
the margin or have
non-zero slack variables

Source: ESL Ch. 12
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Non-separable Case, cont.

I For the non-separable case, the optimization problem
becomes

min
β,β0,

1

2
‖β‖2 + C

n∑
i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi , ξi ≥ 0 ∀i

where C is a tuning parameter

I When C =∞ this is equivalent to the separable case
I The non-separable SVM can be applied to separable

data with a finite value for C
I Higher misclassification, but better generalization error
I More on this later
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Computing the support vector classifier

I We can formulate the SVM objective as a quadratic
optimization problem with linear inequality constraints
using the Lagrange dual representation:

f̂SVM = max
α

[
n∑

i=1

αi −
n∑

i=1

n∑
i ′=1

αiαi ′yiyi ′x
T
i xi ′

]

I Maximizing this subject to 0 ≤ αi ≤ C ,
∑n

i=1 αiyi = 0
and the Karush-Kuhn-Tucker conditions uniquely
determines the solution to the optimization problem

I This representation is the basis for several extensions of
SVM
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Mixture Example (effect of cost ‘C’)

I Smaller C results in a
more complex decision
boundary (i.e. ‖β‖2 can
be large)

I Better training error
I Poor generalization

error

I Larger C results in a
simpler decision boundary

I Worse training error
I Better generalization

error

Source: ESL Ch. 12
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Support Vector Machines and Kernels

I We can enlarge the feature space using basis expansions
(e.g. higher order terms x2

1 , interaction terms x1x2, etc.)

I Linear decision boundaries in higher dimensional space
correspond to non-linear decision boundaries in the
original space

I Consider fitting the SVM with basis functions
h(xi) = (h1(xi), h2(xi), . . . , hp′(xi)) producing the

non-linear function f̂ (xi) = h(x)Tβ + β0 where the
classifier is Ĝ (x) = sign(f̂ (xi))
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Computing the SVM for Classification
For the enlarged feature space, the Lagrange dual becomes :

LD =
n∑

i=1

αi −
n∑

i=1

n∑
i ′=1

αiαi ′yiyi ′
〈
h(xi ), h(xi ′)

〉
and the solution function f (x) can be written

f (x) = h(x)Tβ + β0 =
n∑

i=1

αiyi
〈
h(x), h(xi)

〉
+ β0

Each of these depend on the covariates x only through the
inner products

I The transformation h(x) need not be explicitly specified

I All we need to know is the kernel function
K(xi , xi ′) =

〈
h(xi), h(xi ′)

〉
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Kernel examples

We generally assume that the enlarged feature space is a
reproducing kernel Hilbert space (RKHS) with kernel function
K(xi , xi ′) which computes the inner product in the feature
space

The kernels K should be symmetric positive semi-definite
functions

Common kernels used are:

d th-degree polynomial K (x , x ′) = (1 + 〈x , x ′〉)d
Gaussian radial basis K (x , x ′) = exp{−γ‖x − x ′‖2}

Neural network K (x , x ′) = tanh(κ1〈x , x ′〉+ κ2)

Replacing x with a kernel is common in machine learning and
is often referred to as the “kernel trick”
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Non-linear SVM

I Using kernels allows for highly
non-linear decision functions

I The Gaussian radial basis kernel
corresponds to an infinite
dimensional feature space (i.e.
All data with unique points x are
linearly separable)

I We still use the non-separable
formulation to reduce
overfitting

Source: ESL Ch. 12
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The SVM as a Penalization Method

Recall the definition of the SVM objective:

min
β,β0,

1

2
‖β‖2 + C

n∑
i=1

ξi

subject to yi(h(xi)
Tβ + β0) ≥ 1− ξi , ξi ≥ 0 ∀i

For f (x) = h(xi)
Tβ + β0, the optimization problem

min
β,β0

n∑
i=1

[1− yi f (xi)]+ +
λ

2
‖β‖2

is equivalent to the SVM objective, where [a]+ = min(0, a) is
the hinge loss. This resembles the form of a penalized method
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Support Vector Machines for Regression
(SVR)

I SVM methods have been extended to regression

min
β,β0

n∑
i=1

‖yi − f (xi)‖ε +
λ

2
‖β‖2

where ‖c‖ε = max(0, c − ε)
I Typical SVR setup tries to retain some of the desirable

properties of support vector classification

I By using different loss functions and penalization terms,
SVR can resemble many (penalized) regression methods
(e.g. OLS, quantile regression, ridge regression, LASSO,
etc.)
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ε-insensitive loss functions

I Errors of size ε or less are
ignored

I Larger values of ε lead to more
sparse solutions

I Reminiscent of maximum margin
in classification SVM

I The linear ε-insensitive loss
function has been compared to
the loss functions used in robust
regression
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Introduction to Tree Based Methods

I Binary decision trees
I Decision tree methods recursively partition the feature

space into a set of rectangles and then fit a simple
model in each one

I Decision trees are easily interpretable
I Popular among medical scientists

I There are tree based methods for classification and
regression

I Bagging
I Bagging methods fit a (simple) model on several

bootstrap samples of the data and average the results
over the bootstrap replicates

I Works best for high-variance low-bias estimators
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Partitions

I Not all partitions are possible
with decision trees

I The partition in the top figure
cannot be obtained from
recursive binary splitting

I The Partition in the bottom
figure can

I With sufficient sample size,
Trees can capture complex
relationships

Source: ESL Ch. 9
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Tree Example

I Top figure shows the tree
diagram corresponding to the
partition in the previous slide

I Observations that meet the
criteria go to the left,
otherwise they go to the right

I Bottom figure shows a potential
prediction surface for the tree

Source: ESL Ch. 9
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Classification and Regression Trees

I The training data consists of n pairs of
(x1, y1), . . . , (xn, yn) with xi ∈ Rp

I For classification yi ∈ {1, . . . , k}
I For regression yi ∈ R

I Trees are grown with a greedy algorithm
I At each terminal node, the daughter nodes are chosen to

minimize the error according to a prespecified splitting
criteria

I Single trees are usually overfit leading to a high variance
low bias estimator

I Fully grown trees are “pruned” to balance the bias
variance trade-off
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Definition of Random Forests

The original random forest algorithm, proposed by Leo
Breiman, was the application of bagging to binary decision
trees

I Trees can capture complex interaction structures in the
data

I Decision trees, grown sufficiently deep, have high variance
and low bias

I Each tree is identically distributed
I The expectation of the average of B trees is the same as

the expectation of the individual trees

I These qualities make trees ideal for bagging
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Random Forest algorithm

1. For b = 1 to B

(a) Draw a bootstrap sample Z∗ of size n from the training
data

(b) Grow a random-forest tree Tb to the bootstrapped data,
by recursively repeating the following steps for each
terminal node of the tree, until the minimum node size
nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point combination among
the m variables.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .
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Details of Random Forests

I For classification, the predicted class is a simple majority
based on a vote from each tree

I For regression, the random forest prediction is an average
of the individual tree predictions

Tuning parameters

I Candidate variables at each split m
I Default for classification m =

√
p

I Default for Regression m = p
3

I Minimum node size nmin

I Number of trees B
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Out of Bag Samples

I On average, about 37% of observations will not appear in
a given bootstrap sample

I These out of bag (OOB) samples can be used to estimate
the out of sample error rate

I For each observation (xi , yi) construct its OOB predictor
by averaging only the trees for which (xi , yi) was not in
the bootstrap sample

I The OOB error rate can be used to determine the optimal
number of trees B

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 27/ 58



Variable Importance

I One variable importance
measure (red) is based on how
often a variable is used and how
much it improves the splitting
criteria

I The OOB variable importance
measure (blue) is based on the
predictive ability of a variable
compared to a random
reshuffling of that variable Source: ESL Ch. 15
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Random Forests and Overfitting

I Some claim that random
forests cannot overfit the
data

I Increasing the number
of trees B does not
result in decreased
out-of-sample
performance

I However, fully grown
trees can result in a
model that is too rich
leading to unnecessary
variance

Source: ESL Ch. 15
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Random Forests and Overfitting

I The performance of a
random forest suffers
when it is unlikely that a
relevant variable will be
chosen at a given split

I For comparison, gradient
boosting is able to
disregard noise variables

Source: ESL Ch. 15
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Analysis of Random Forests
I The limiting form

(B →∞) of the random
forest regression is

f̂rf(x) = EΘ|ZT (x ; Θ,Z)

I Consider estimation at a
single point x , the limiting
variance of the estimate is

lim
B→∞

Var f̂rf(x) = ρ(x)σ2(x) Source: ESL Ch. 15

where
ρ(x) = corr[T (x ; Θ1(Z)),T (x ; Θ2(Z))]

σ2(x) = VarT (x ; Θ,Z)
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Bias of Random Forests

The bias of a random forest is the same as the bias of any
individual tree in the forest T (x ; Θ(Z))

Bias(x) = µ(x)− EZf̂rf(x)

= µ(x)− EZEΘ|ZT (x ; Θ(Z))

The bias of a random forest tree is typically greater than the
bias of a fully grown, un-pruned tree grown to Z

I Bias increases due to randomization and the reduced
number of unique observations in the bootstrap sample
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Randomness in Random Forests

I RFs incorporate randomness to create unique trees
I Bootstrap samples
I Random selection of variables considered at each split

I Randomization reduces correlation between trees, which
gives better performance

I Example: Extremely Randomized Trees (ERT) [Geurts et
al 2005]

I Uses full data for each tree (Not bootstrap samples)
I Random selection of variables considered at each split
I A single randomly drawn split-point is considered for

each variable
I Selects variable/split-point that optimizes splitting

criteria
I Can reduce bias and variance compared to traditional RF
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Random Survival Forests

I Survival trees are an extension of binary trees to right
censored data

I Each terminal node is split into two daughter nodes using
a predetermined survival criterion (e.g. Log-rank test
statistic)

I Trees are grown under the constraint that a terminal node
should have no less than d0 > 0 unique failures

I The Cumulative hazard function (CHF) is calculated in
each terminal node (i.e. Nelson-Aalen Estimator)

I The node level CHFs are averaged to obtain the ensemble
CHF.
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RIST Motivation

I Tree-based survival regression can be robust under
violation of the restrictive proportional hazards
assumptions

I Censored data is hard to use — censored observations are
typically only used to calibrate the risk sets of the
log-rank statistics

I We can’t obtain as much information from censored data
as there is in noncensored data, but what is the best we
can do?

I Can we avoid the requirement of a minimum number of
observed failure events in each terminal node?
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Data Setup

I Let X = (X1, . . . ,Xp) denote a set of covariates from a
feature space X

I The failure time T given X = x is generated from the
distribution function Fx(·) = 1− Sx(·)

I The censoring time C given X = x has conditional
distribution function Gx(·)

I The observed data are (Y , δ,X ), where Y = min(T ,C )
and δ = I{T ≤ C}

I Assume T and C are independent given covariates X ,
(T ⊥ C |X )

I Also assume that there is a maximum length of follow-up
time τ
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Imputation motivation

I A censored observation will always fall into one of the
following categories:

I The true survival time T is larger than τ so that we
would not observe it, even if the subject started at time
0 and was followed to the end of study

I The true survival time T is less than τ so that we would
observe the failure if the subject started at time 0 and
there was no censoring prior to the end of study

I The category is masked whenever a subject is censored

I How to classify censored observations and how to impute
values for them if they fall into either category
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Algorithm for tree fitting

(1) Survival tree model fitting

(2) Conditional survival distribution

(3) One-step imputation for censored observations

(4) Refit imputed dataset and further calculation

(5) Final prediction
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Survival Tree Model Fitting

I B independent trees are fit to the entire training dataset
with the ERT model:

I In each terminal node, select m covariates along with
one random split point per non-constant covariate

I The log-rank test statistic is used to determine the best
split

I Each terminal node is split again until no further splitting
can be done without causing a terminal node to have
fewer than nmin events (i.e., observations with δ = 1)

I Each terminal node is treated as a group of homogeneous
subjects for purposes of estimation and inference.
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Imputation

I For the i th individual, estimate the survival function for
each tree Ŝ i

b(t)

I Averaging over B trees, we have the forest-level survival
function Ŝi = 1

B

∑B
b=1 Ŝ

i
b

I Generate a new observation Y ∗i from the forest-level
survival function, and treat it as the observed failure time

I Note that the observed failure events in the dataset are
not modified by this procedure

I Independently generate B imputed datasets, fit a single
ERT to each of them, and pool the B trees to calculate
new survival function estimates
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Recursion

I For each of the B imputed datasets, fit a single ERT to
each of them, and pool the B trees to calculate new
survival function estimates

I The new survival function estimates can be used to
ganerate another set of B imputed datasets

I This recursive approach can be repeated multiple times
prior to the final step

I Denote the process involving q imputations as q-fold
RIST, or simply RISTq
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Why RIST Works

I Since the entire training set is used to build each single
tree, ERT can build larger models (i.e., with more
terminal nodes) compared with RF, which uses bootstrap
samples

I After the first imputation cycle, additional observed
events are created that allow each tree to grow even
deeper

I The random generation of the imputed values provides
sufficient diversity which will help eliminate overfitting
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Why RIST Works, cont.

I The RIST algorithm can be viewed in the context of a
Monte Carlo EM algorithm

I The random generation of imputed values can be viewed
as the Monte Carlo E-step without taking the average of
all randomly generated sample points

I The survival tree fitting procedure is explicitly an M-step
to maximize the nonparametric model structure

I The imputation procedure preserves the information
carried by censored observations, and introduces an extra
level of diversity into the next level of model fitting

I Diversity is one of the driving forces behind the success of
ensemble methods
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Diversity and Forest Averaging

I An interesting phenomenon of
diversity can be seen when
averaging the terminal node
survival function estimation over
the forest

I Even though an individual
terminal node estimation (using
nmin observed events) could have
a high variance or be largely
biased, the overall forest
estimation will still be very
accurate

Source: Zhu & Kosorok
(2012)
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Identifying Heterogeneous Treatment
Effects

I We want to use data to draw inferences about the causal
effect of a treatment

I We now have enough data to meaningfully explore
heterogeneity of treatment effects in several subgroups

I We can reduce the rate of false positives by specifying in
advance which subgroups will be analyzed

I However, this can make it difficult to discover strong but
unexpected treatment effect heterogeneity

I We need methods that yield valid asymptotic confidence
intervals for the true underlying treatment effect
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Data and Setup

I The training data consist of n iid replicates of
I Feature Vector: Xi ∈ [0, 1]p

I Response: Yi ∈ R
I Treatment indicator: Ai ∈ {0, 1}

I We use the potential outcomes framework

I Our goal is to estimate the treatment effect at x

τ(x) = E
[
Y

(1)
i − Y

(0)
i

∣∣∣Xi = x ]

I To estimate this quantity, we assume unconfoundedness

{Y (0)
i ,Y

(1)
i } ⊥ Ai |Xi
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Treatment Effect Estimation

For the bth tree, let L be the leaf that contains the point x
and define the tree level estimated treatment effect as

τ̂b(x) =
1

|{i : Ai = 1,Xi ∈ L}|
∑

{i :Ai=1,Xi∈L}

Yi

− 1

|{i : Ai = 0,Xi ∈ L}|
∑

{i :Ai=0,Xi∈L}

Yi

The causal forest estimate is found by averaging over the tree
level estimates

τ̂(x) =
1

B

B∑
b=1

τ̂b(X )
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Asymptotic Inference

I We want a consistent estimator with a well-understood
asymptotic sampling distribution

I With asymptotic normality we can test hypotheses and
make confidence intervals

(τ̂(x)− τ(x))/
√

Var[τ̂(x)]⇒ N (0, 1)

I To prove asymptotic normality, we need:
I To establish conditions under which τ̂(x)→ τ(x)
I Find a consistent estimator of Var[τ̂(x)]
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Honest trees

I Showing that τ̂(x)→ τ(x) requires some conditions on
the forest-growing scheme:

I The trees used to build the forest must be grown on
subsamples of the training data where the number of
subsamples s ≈ nβ for β < 1

I Honesty: The splitting rule must not “inappropriately”
incorporate information about the outcomes Yi

I A tree is honest if, for each training example i , it only
uses the response Yi to estimate the within-leaf
treatment effect τ or to decide where to place the splits,
but not both

I We briefly describe two algorithms that meet the honesty
criteria
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Double Sample Trees

I Input: n training examples of the form (Xi ,Yi) for
regression trees or (Xi ,Yi ,Ai) for causal trees. A
minimum leaf size nmin.

1. Draw a random subsample of size s from {1, . . . , n}
without replacement, and then divide it into two disjoint
sets of size |I| = bs/2c and |J | = ds/2e

2. Grow a tree via recursive partitioning. The splits are
chosen using any data from the J sample and (X ,A)
from the I sample, but without using Y from the
I-sample

3. Estimate leafwise responses using only the I-sample
observations.

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 52/ 58



Double Sample Trees, cont.

I Sample splitting procedures are sometimes criticized as
inefficient because they “waste” half of the training data

I Forest subampling mechanism enables us to achieve
honesty without wasting any data in this sense, because
we rerandomize the I/J -data splits over each subsample

I No data point can be used for split selection and leaf
estimation in a single tree

I Each data point will participate in both I and J samples
of some trees, and so will be used for both specifying the
structure and treatment effect estimates of the forest

I Double-sample trees were proposed to eliminate bias, but
they can reduce mean-squared error as well
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Propensity Trees

I Input: n training examples (Xi ,Yi ,Ai), where Xi are
features, Yi is the response, and Ai is the treatment
assignment. A minimum leaf size nmin.

1. Draw a random subsample I ∈ {1, . . . , n} of size |I| = s
(no replacement).

2. Train a classification tree using sample I where the
outcome is the treatment assignment, that is, on the
(Xi ,Ai ) pairs with i ∈ I. Each leaf of the tree must
have k or more observations of each treatment class.

3. Estimate τ(x) on the leaf containing x .

I Propensity trees can be particularly useful in observational
studies, where we want to minimize bias due to variation
in the propensity, e(x)

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 54/ 58



Variance of Causal Forests

To define the variance estimates, let τ ∗b (x) be the treatment
effect estimate given by the bth tree, and let N∗ib ∈ {0, 1}
indicate whether or not the i th training example was used for
the bth tree.

V̂IJ(x) =
n − 1

n

(
n

n − s

)2 n∑
i=1

Cov∗[τ
∗
b (x),N∗ib]2

I The term n(n − 1)/(n − s)2 is a finite-sample correction
for forests grown by subsampling without replacement

I This variance estimate is consistent, in the sense that
V̂IJ(x)/Var [τ̂(x)]→p 1
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Performance of Causal Forests

I Causal forests maintain good MSE even as the dimension
of the covariate space p gets large

I The MSE can improve as p increases
I The variance of a random forest depends on the variance

of trees times the correlation between trees
I When p is larger, the individual trees have more

flexibility, reducing their correlation and decreasing the
variance of the full ensemble

I The performance of the confidence intervals starts to
decay when p gets large

I As p increases, random forests tend to be dominated by
bias instead of variance, so the confidence intervals are
not centered
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Conclusion

I The asymptotic properties of causal forests apply to other
random forest methods so long as they meet the
subsampling and honesty assumptions

I There are still many open questions in causal forest
research

I The bias is not well controlled for large p, splitting rules
that focus on the coordinates with the greatest signal
could reduce the bias

I It is unclear from a theoretical perspective whether
double sampling or propensity trees are better

I There is no principled, automatic way of selecting the
subsample size s

I We would like to extend pointwise confidence intervals
to simultaneous confidence intervals
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